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Observation:
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There is a large momentum anisotropy:
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〉 ≈ 20%

Interpretation

• The medium responds as a fluid to differences in X and Y pressure gradients



Data on Elliptic Flow:
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X:Y = (1 + 2v2︸︷︷︸
∼0.4

: 1− 2v2︸︷︷︸
∼0.4

)

Elliptic flow is large X:Y∼ 2.0 : 1



Need Hydrodynamics

∂µT
µν = ∂µ(e uµuν + p∆µν) = 0

• Equation of State (EoS): p(e, n)

• Don’t really know what the constituents are?

• Transport theory viable?

To interpret these EOM let us write them in the LRF:

∂tT
00 → ∂te = −(e+ p) ∂ivi



Work

i vi∂ × = dt 
V

dV
∂te = −(e+ p) ∂ivi

de = −(e+ p)
dV

V
V de = −edV − pdV

• The EOM reads

d(eV ) = −pdV
• Compare: d(eV ) = Td(sV )− pdV and find

d(sV ) = 0

pdV Work means Entropy is Conserved



The Bjorken expansion
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Spectators
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• Define the space time rapidity and proper time: ηs = 1
2 log 1+z/t

1−z/t and τ =
√
t2 − z2

1
2

log
1 + z/t

1− z/t︸ ︷︷ ︸
space time rapidity

≈ 1
2

log
1 + vz
1− vz︸ ︷︷ ︸

fluid rapidity

≈ 1
2

log
1 + pz/E

1− pz/E︸ ︷︷ ︸
particle rapidity

All rapidities are (almost) the same in high energy collision



1D Bjorken Expansion: (Bjorken)
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V = τ ∆η A
1
V

dV

dτ
=

1
τ

• The Equation of motion

∂te = −(e+ p)∂zvz

de

dτ
= −(e+ p)

1
τ

d(τe)
dτ

= −p

Energy per rapidity decreases due to p dV work



1D Expansion: Hydro vs. Free Streaming

de

dτ︸︷︷︸
de

= − e
τ︸︷︷︸

−e dV

+ −p
τ︸︷︷︸

−pdV

• For Euler Hydro and Ideal Gas: p = 1
3ε , ε = ε0

(
T
T0

)4

T = T0

(
τ0
τ

)1/3

• Entropy Per Rapidity: s ∝ T 3

τs =
ds

dy
= Const

• Number per Rapidity: n ∝ T 3

τn =
dn

dy
= Const



1D Expansion: Free Streaming - Rough Approximation

de

dτ
= − e

τ
+ −p

τ︸︷︷︸
≈0

• How would the “temperature” , ε = ε0
(
T
T0

)4

“T” = T0

(
τ0
τ

)1
3÷

1
4

• Entropy Per Rapidity: s ∝ T 3

τs =
ds

dy
∼ τ0÷1

4

ds
dy is approximately constant even if non-equilibrium effects taken into account



3D Expansion

3τ
1V ~ • Entropy is conserved:

(sV ) ∼ Const

• Now

s ∼ 1
V
∼ 1
τ3

Then with s ∝ T 3

T ∼ 1
τ



Summary

3D1D 

T ∝ 1
τT ∝ 1

τ 1/3

Free streaming or Viscous effects do not radically change powers



Hydrodynamics with Viscosity (Gyulassy and Danielewicz)

T ij = pδij − η
(
∂ivj + ∂jvi − 4

3
δij∂ · v

)
+ bulk viscosity

• The Bjorken expansion becomes

de

dt︸︷︷︸
de

= − e
1
τ︸︷︷︸

edV

− Tzz 1
τ︸ ︷︷ ︸

peffdV

• The pressure get reduced by the expansion

Tzz = p− 4
3
η

1
τ︸︷︷︸

∂zvz

• The equation of motion is

de

dt︸︷︷︸
de

= − (e+ p)
1
τ︸ ︷︷ ︸

−ideal

+
4
3
η

τ2︸ ︷︷ ︸
+viscous



How valid is Hydrodynamics?

de

dt
= −(e+ p)

1
τ

+
4
3
η

τ2

• Comparing the size of the viscous term to the ideal term need .

η

e+ p

1
τ
� 1

• Function of time, temperature, etc, (e+ p) = sT

η

s︸︷︷︸
fluid parameter

× 1
τT︸︷︷︸

experimental parameter∼ 1/2

� 1

Need η/s smallish to have hydro at RHIC



What does η/s < 0.4 mean theoretically?

• Perturbation theory: (Baym and Pethick. Arnold, Moore, Yaffe)

– Kinetic theory of quarks and gluons + soft gauge fields + collinear

emission

η

s
' 0.3

(
0.5
αs

)2

• N = 4 Super Yang Mills at strong coupling (Kovtun, Son, Starinets, Policastro)

– No quasi-particles. Conjectured Lower Bound

η

s
=

1
4π



Temperature dependence of shear viscosity

• For a gas of n particles with cross section σ0

η ∼ T

σ0

• Scale invariant theory: σ0 ∝ 1
T 2 and η ∝ T 3

η

e+ p
∼ 1
T

=⇒ η

(e+ p)τ
∼ 1
T τ

• Constant cross section: σ0

η

e+ p
∼ T

σ0

1
nT

=⇒ η

(e+ p)τ
∼ 1
nσ0τ

η(T ) determines the quality of hydro vs. time



1D Expansion
1D 

T ∝ 1
τ 1/3 and n ∝ 1

τ

• Scale invariant theory: Hydro gets better

η

(e+ p)τ
∼ 1
τT
∼ 1

τ
2
3

• Constant Cross Section: Hydro stays the same

η

(e+ p)τ
∼ 1
nσ0τ

∼ Const.



3D Expansion

3D

T ∝ 1
τ and n ∝ 1

τ 3

• Scale invariant theory: Hydro stays the same

η

(e+ p)τ
∼ 1
τT
∼ Const

• Constant Cross Section: Hydro gets worse fast

η

(e+ p)τ
∼ 1
nσ0τ

∼ τ2

σ0



Summary

Expansion
1 D 3 D

σ

2T
sα

Expansion
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++

--

3 T∝ η

 T∝ η



(digression)



What does η/s ' 1/4π mean?

• Many things wrong about AdS/CFT – jets. initial reaction etc

• Is something qualitatively wrong/right from AdS/CFT in the soft sector?

• Kinetic picture of the plasma. Occasional scattering of gluons

The time between collisions is

τc ∼ c `mfp ∼ 1
g4T

In AdS/CFT there are no independent scattering events/particles etc.



Spectral Densities in AdS/CFT and Perturbation Theory

ρ(ω) ≡
∫
d4x e+iωt 〈[T xy(t), T xy(0)]〉

ω

1
g4T

∼ g4T

ρ(ω)
ω

Kinetic Theory
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Euclidean Correlator: Free and Strongly Interacting

〈Txy(−iτ)Txy(0)〉 =
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(end digression)



Solving Navier Stokes

• The Navier Stokes equations

∂µT
µν = 0 T ij = pδij︸︷︷︸

equilibrium

+ πij︸︷︷︸
correction

• The “first order” stress tensor instantly assumes a definite form.

πij = −η
(
∂ivj + ∂jvi − 2

3
δij∂ · v

)
O(ε) = O(ε)

• Can make “second order” models which relax to the correct form (Israel, Baier et al)

−τR ∂tπ
ij + other derivs = πij + η

(
∂ivj + ∂jvi − 2

3
δij∂ · v

)
O(ε2) = O(ε) + O(ε)

Can solve these models



Running Viscous Hydro in Three Steps

1. Run the evolution and monitor the viscous terms

2. When the viscous term is about half of the pressure:

– T ij is not asymptotic with∼ η(∂ivj + ∂jvi − 2
3
δij∂lv

l)

Freezeout is signaled by the equations.

3. Compute spectra:

– Viscous corrections to the spectra grow with pT

fo → fo + δf

Maximum pT is also signaled by the equations.



Bjorken Solution with transverse expansion: Step 1 (η/s = 0.2)
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Viscous corrections do NOT integrate to give an O(1) change to the flow.



Freezeout

• Freezeout when the expansion rate is too fast

τR∂µu
µ ∼ 1

• The viscosity is related to the relaxation time

η

e+ p
∼ v2

thτR p ∼ e v2
th

• So the freezeout criterion is

η

p
∂µu

µ ∼ 1



Monitor the viscous terms and compute freezeout: Step 2

• Contours where viscous terms become O(1)

η

p
∂µu

µ =
1
2

η/s η
p∂µuµ χ

0.05 0.6 12.0

0.05 0.225 4.5

0.05 0.15 3.0

0.2 0.9 4.5

0.2 0.6 3.0

0.133 0.6 4.5

TABLE I: Freezeout parameters used throughout this work. For a given η/s the most physical

choice of freezeout parameter χ is selected such that (η/p)∂µuµ ≈ 0.6. However, if the viscosity

becomes so small (such as for η/s = 0.05) that the volume becomes unphysically large (see text for

discussion) we set χ = 4.5 as a maximum. These three physically motivated parameter sets are in

bold.

FIG. 5: (Color online) Contour plot of various freezeout surfaces for central Au-Au collisions. Left:

Surfaces from ideal hydrodynamics where the freezeout condition is set by the parameter χ=1.5, 3

and 4.5. Right: Corresponding viscous solution where η/s was fixed by the condition η
p∂µuµ = 0.6.

The thin solid black curve shows the contour set by η
p∂µuµ = 0.225 for comparison.

V. SPECTRA

A. Anisotropy

Before computing the differential spectrum we will compute the momentum anisotropy
as a function of time. The momentum anisotropy A2 (which differs from v2 by the placement
of averages) is defined as

A2 =
〈p2

x〉 − 〈p2
y〉

〈p2
x〉 + 〈p2

y〉
=

S11 − S22

S11 + S22
, (5.1)

14

The space-time volume where hydro applies depends strongly on η/s



Step 3: Viscous corrections to the distribution function fo → fo + δf

• Corrections to thermal distribution function f0 → f0 + δf

– Must be proportional to strains

– Must be a scalar

– General form in rest frame and ansatz

δf = F (|p|)pipjπij =⇒ δf ∝ f0 p
ipjπij

– Can fix the constant

pδij + πij =
∫

d3p

(2π)3
pipj

Ep
(f0 + δf)

find

δf =
1

2(e+ p)T 2
fo p

ipjπij



Viscous Hydro Results:

safe to use only the auxiliary variable when generating spectra for this particular parameter
set. In figure 10 we show a summary plot of the differential elliptic flow. We now show
one additional curve for η/s = 0.133 yielding (η/p)∂µuµ = 0.6 for this particular choice of
freezeout surface. We believe that this choice of parameters is the closest physical scenario.
The right plot of figure 10 shows the measured elliptic flow for Pions and Kaons as measured
by the Pheneix collaboration. We do not intend to make a comparison, but simply would
like to keep the data in mind.

Before a realistic comparison with data can be made the qgp/hadronic phase transition
must be taken into account. In the vicinity of the phase transition it is possible that the shear
viscosity may become very large. Also, a more realistic model for the hadronic gas would be
the hard sphere model where η ∼ T

σ0
. This would adjust at what point the simulation freezes

out and would therefore effect spectrum. There is most likely a finite bulk viscosity due to
the fluctuations of the qgp and hadron concentrations in the mixed phase or from chemical
off-equilibrium in the hadronic phase. A final issue that should be taken into consideration
is that particles of different mass could possibly freezeout at different on different surfaces.
These issues will be addressed in a future work.
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FIG. 10: Left: Summary plot showing v2 for massless particles for simulations using ideal hydro and

η/s = 0.05, 0.2. Right: Four-particle cumulant data as measured in Au-Au collisions at
√

s = 200

GeV for a centrality selection of 16% to 24% [27].

B. Comparison

We now compare our results to some other groups, first with the recent results of Song
and Heinz [12] where they computed differential v2 spectrum in Cu-Cu collisions.

One conclusion they found is that varying the initial conditions do not change the end
result, even in the extreme condition when the equilibrium stress tensor is set to zero
πµν(τ0) = 0.

Song and Heinz also found that the viscosity substantially changes the equations of mo-
tion. Their differential v2 spectra changes dramatically when viscosity is included, even if

21
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Elliptic Flow as a function of viscosity and pT , bottom line
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η/s = 0.2 with δf and without δf
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η/s = 0.05 with δf and without δf
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η/s = 0.2 and gradients vs. πij
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Compare to η/s = 0.05
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Independent of second derivative terms (K. Dusling, DT)

−τR ∂tπ
ij + other derivs = πij + η

(
∂ivj + ∂jvi − 2

3
δij∂ · v

)
O(ε2) = O(ε) + O(ε)
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Comparison with Huichao Son and U. Heinz

Codes agree. Differ in how second order terms are implemented



Hydro Conclusions:

• Viscosity does not change the ideal hydrodynamic solution much.

• Viscosity does change the freezeout spectrum of final hadrons

• Viscosity signals the boundary of applicability of hydro

– Need η/s <∼ 0.3 to use hydro at all.

– For pT >∼ 1.5 GeV the viscous corrections large.

Will even η/s ' 1/4π be enough to explain the v2 data?


